EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-CONF-644296

Features in Deep Learning
Architectures with Unsupervised
Kernel k-Means

K. S. Ni, R. J. Prenger

September 27, 2013

GlobalSIP
Austin, TX, United States
December 3, 2013 through December 5, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Learning Features in Deep Architectures with
Unsupervised Kernel £-Means

Karl Ni, Ryan Prenger
Video Laboratory Directed Research and Development
Lawrence Livermore National Laboratory
ni4 @lInl.gov, prengerl @llnl.gov

Abstract—Deep learning technology and related algorithms
have dramatically broken landmark records for a broad range of
learning problems in vision, speech, audio, and text processing.
Meanwhile, kernel methods have found common-place usage due
to their nonlinear expressive power and elegant optimization
formulation. Based on recent progress in learning high-level,
class-specific features in unlabeled data, we improve upon the
result by combining nonlinear kernels and multi-layer (deep)
architecture, which we apply at scale. In particular, our exper-
imentation is based on k-means with an RBF kernel, though it
is a straightforward extension to other unsupervised clustering
techniques and other reproducing kernel Hilbert spaces. With the
proposed method, we discover features distilled from unorganized
images. We augment high-level feature invariance by pooling
techniques.

I. INTRODUCTION

Tasks in computer vision, audio and multimedia research,
and natural language and text processing require features that
saliently describe a semantic concept. One approach is to
directly learn low-level features to hierarchically construct
classifiers with Haar wavelets [4] and deformable parts [5], but
generalization has suffered and labels are costly to produce.
Meanwhile, theoretical features, such as the oft-cited SIFT [1]
and GIST [2] in vision and standard MFCC'’s [3] for speech,
speaker recognition, and diarization, have been shown to be
somewhat successful, though are often not as salient for
recognition tasks as more class-specific high-level features.
Instead, we have seen a recent push to learn high-level features
in a completely unsupervised fashion given large enough data
sets with deep learning architectures.

The success of high-level features in deep learning archi-
tectures [6], [7] has been demonstrated in audio [10], [8],
[9] and vision [11], working especially well at scale [12]
with sparse autoencoders. While previous computer vision
techniques focused on labeled training data sets, deep learning
methodology features have shown potential in building class-
specifity in an unsupervised setting. Meanwhile, the expressive
power of nonlinear kernels, particularly in kernel machines
like SVMs [13], have been used regularly with much success.
In addition to constructing high-dimensional discrimination

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

boundaries, kernels can easily be used to generatively ap-
proximate densities (kernel density estimates), parameterize
nonlinear regression algorithms (kernel ridge regression and
support vector regression), dimensionality reduction (KPCA),
and in general, construct spaces that offer more flexibility.

The proposed algorithm seeks to unify the expressiveness of
nonlinear kernels with the learning ability of deep networks.
Specifically, we explore an architecture that can best be
described as deep kernel k-means. The nomenclature deliber-
ately denotes the methodology: iteratively determine multiple
layers of centroids using clustering, where comparisons are
made based on a similarity function. In our case, the similarity
function is the radial basis function (RBF) kernel, and the
clustering algorithm is k-means.

Our choice of the k-means algorithm, and by extension,
kernel k-means [14], was primarily due to its simple imple-
mentation, but the generalized deep learning paradigm extends
to any unsupervised clustering method. Moreover, although re-
cent successful deep architectures have been implemented with
sparse auto-encoders, it has been shown [15] that, at least on a
per layer basis, certain brands of k-means, i.e., soft k-means or
“triangle” k-means, are at least commensurate in quality and
often outperform sparse auto-encoders and sparse RBM. The
trend has, in fact, inspired some deep implementations with
variations on a modified k-means optimization algorithm [16],
[17].

The remainder of this paper is devoted to explaining the
deep kernel k-means algorithm and its application to learning
high-level features. Discussion of the algorithm in the next
section includes the construction and application of kernel
space, description of the deep architecture, and methods for
data augmentation and aggregation. Because the proposed al-
gorithm is derived from several related works, we also explore
their relationship to our technique, and compare recognition
performance.

II. ALGORITHM

Deep kernel k-means consists of (1) alternating processes
of kernel construction and kernel application, (2) layering with
care to patch size, and (3) a good set of training dimenions.
We discuss the three aspects of this problem presently:

A. Constructing and Applying the Kernel Space

At each level of the deep hierarchy, we determine parame-
ters of a kernel space through kernel k-means. Seminal work in
kernel k-means [14] constructs the kernel function K (x;,x;)
without explicitly calculating ¢(x), the high dimensional map-
ping, where K (x;,%;) = (¢(x;), ¢(x;)). In practice, however,
the kernel matrix, one which is massive and grows as O(nz),
can seldomly be calculated or transductively inferred, and it
is generally much simpler to calculate ¢(x) directly.

To construct the kernel space at layer j, we first
perform k-means given a set of vectors, QUTD =
{xU71 xF=1 ... xU 71} which is based on transformations
on the original training set {2. At layer one, we use the
unadulterated €, itself. The j** kernel space is thus entirely
determined by the distribution of all the transformed training
points via their kernel spaces at every, previously calculated
layer, i.e., from layers 1,2,---,(j — 1).

Each dimension of the new kernel space is based on
its RBF similarity to a centroid. That is to say, the i'"
dimension of the j*" transformation layer can be given by
#)(x)[i] = K(x,x;), provided we have previously learned
#), correctly. Here, we train on features x € {xU~1D}, the
set of features transformed from the previous layer j — 1, and
¢ (x) : RFs-1 — RFs, where k; is the number of clusters
chosen at layer j.

Concretely, the i" dimension of ¢(x) can be defined by
o(x)[7] = K(x,1h;), where ¢(m;) = m;, and we have:

_llx=my 2 7]
e 201
_Hx—m22||2
o= |)
Z l|x—m;||? :
e o :
lx—my |2
i=1 e 2{7%

Fig.1 is a simple and yet effective application of deep kernel
k-means (six layers) to synthetically generated random data.
Because the original training set is nonlinearly separable, we
start with a large k£ and successively shrink it to the actual
k. The oversampled %k (almost effectively a kernel density
estimate) in the initial layers not only effectively encompass
much of the structure of data, but has also enabled the
overcoming poor initialization cases.

Upon further examination, it is apparent that (1) satisfies
conditions of being a complete vector space. Indeed, we can
(and do) endow it with a dot product, eminently important
when we consider k-means for the next level/stage of the deep
learner. The dot product is, again, the RBF, and the space is
thus, unsurprisingly, a kernel Hilbert space.

The new feature space is not unlike one generated by
softmax regression [18] with k classes, which is often used
as the final stage of deep learners (as opposed to the autoen-
coder). The difference is that instead of the softmax correlation
exponent, x’ m;, which expects normalized inputs, we use the
¢ distance: |- ||?. Furthermore, in our optimization, we define
¢(x) with the Euclidean distance as a vector space on a GMM

&)

(a) 4000 data points (truth)

Kemeans lovel 4
&0 80

&m0
o
20} o

0

2m

&8, -
200 500 400 20 [M0 o B0 600 00 200 M w

(c) Layer 4, k = 25 (d) (Final) Layer 6, k =4

Fig. 1: Six layers of unsupervised deep kernel k-means applied
to non-linearly separable 2D data.

manifold with independent dimensions, where we, again, use
{5 distance to define a RKHS. We use this terminology because
although the RBF is implemented in our rendition of deep
kernel k-means, we could certainly generalize to other positive
definite functions as long as every dimension is defined by a
valid dot product.

Not coincidentally, (1) observes the softmax property that
multiplying through ef* will not bias clustering results. Also
note the bandwidth parameter o can be replaced with a rele-
vant weighting matrix, depending on available computational
resources. The normalization constant applied to the entire
vector ensures that a single dimension is a posterior probability
value, P(i|x), where m; is the i'" mean.

Having tried several options, the bandwidth parameter o; in
(1) is actually implemented as a diagonal covariance matrix,
>, dependent on the spread of points within cluster ;. We
have heuristically chosen

i = % Z xmx,Tn 2)

mecluster i

where M is the number of points in cluster ¢. In our experience
a; ~ 6 yields the best result in the first layer, i.e. the
one that distributes the data across an “appropriate” number
of centroids. (It is different, though, for higher dimensional
vectors.) Due to computational constraints,the full matrix was
unnecessary, though interestingly, a diagonal ¥; matrix did
not outperform the spherical case with scalar o; by much,
especially since we have pre-whitened (2.

B. Feature Hierarchy

The dimensionality of each layer is determined by the
number of clusters k£ chosen. We use the hierarchy defined
in Fig. 2 to train layers of selective and invariant features.

We will train 4 layers, beginning with 32 x 32 patches from
images of size 256 x 256.

e (256) x 64
e e e e o o o s e e | (256) x 256
L L L L L L (1024))(256
(256) x 256
US| (512) x 256
K-Means ﬁ
| T T 1 T T T R R R T T R T R R R R | (32X32)X512

Fig. 2: Deep learning architecture

Fig. 2 depicts the learning architecture for the application to
high-level image features. We begin with the original training
set of 1.4 million patches, whiten the data, and learn 512
centroids at the first layer. Therefore, the second layer has
vectors of dimension 256. From the third to the fourth layer,
we conduct a merge of four adjacent patches, meaning that
the original 32x32 patches have been joined together to form
64 x 64 patches, and the effective number of patches is now
1.6m/4 = 400k image patches. This is done again to effect
100k image patches, and the final decision is made between
64 clusters defining 64 high-level features.

C. Aggregation and Pooling

Determining the amount of overlap between blocks in
training as well as the indexing for data aggregation (e.g.,
Four 4 x 4 patches form a single 8 x 8 patch) have been an
obstacle in our implementation. To some extent, using k-means
effects a quantizing phenomena, introducing a limited amount
of invariance. A significant body of work has been to devoted
to the topic of pooling [19] at the lower levels. For the smaller
shifts, we typically apply max pooling, similar to [16].

III. RELATIONSHIP TO RELATED WORK

There is a close relationship that can be observed between
kernel k-means to sparse autoencoders, RBM’s, and softmax
regression. Upon close examination, there are certain circum-
stances under which the proposed algorithm is equivalent. To
first order, it is worth nothing that each dimension, i, of (1)
can be thought of as a “neuron”, which fires only when x
belongs to cluster 7 by being close to m;. Recall the objective
function of at each layer

min o EN: [hw (%) — will2 + MTL (W) + A Ta (W) (3)

where the two terms 7 and 75 relate to regularization and
sparsity. With k-means, there is no such sparsity term, though
it is analogous to the a; term in (2), regulating the influence
of neighboring “neurons”. Rather, in the proposed algorithm,
sparsity is, to an extent, “enforced”, albeit manually, by the
value of k. Small values of k limit the number of data points

that neurons layer ¢; can be similar to in layer ¢; ;. There is
a subtle different, however. For the most part, while neuron
dimensionality per a given layer discards similarity informa-
tion with respect to un-related dimensions in the previous layer
(those which the sparsity parameter Ay has deemed irrelevant),
a single layer in kernel k-means retains it by keeping a high-
dimensional representation. That is to say, layer £;,; is also
of dimensionality k;, the number of clusters used to encode
the previous layer, retains some amount of information on its
similarity to other neurons in layer /i + 1.

IV. DATA AND EXPERIMENTATION

Depending on the training process, we implemented on two
architectures. For larger data sets (e.g., TrecVid and Media
Eval) a 40-node cluster, each of which has 4 cores and
6GB of memory, and total effective memory of 240GB for
resilient distributed dataset objects used with Spark [20], an
open source cluster package originating from UC Berkeley’s
AMPLab. The architecture takes advantage of map/reduce
concepts but is 10x faster than traditional HDFS and Hadoop
solutions. To prototype, for the CiFAR 10 data set and Faces
in the Wild, we found that local MATLAB on Intel Xeon(R)
8-Core 3.3GHz + 64GB Mem, was sufficient (and faster).

A. Lower level image feature representation

The averaged centroids in the lowest feature layer of those
that activated the highest feature layer in the deep kernel k-
means structure is provided in Fig. 3. At the highest layer, o
was selected to be very small to produce a type of “selector”
vector, from which we took the argument that maximized that
cluster’s posterior probability.

2| 2 2 2| 2 2| 2] u e [
y el o
| | n

T

Fig. 3: Low level patches (16 of 64) that “excite” the final
layer of k-means from the CiFAR 10 database.

Mid-layer clusters (without aggregation) already show some
content discrimination in Fig. 4. As on can tell, there is no
consistent orientation of patches, but interestingly, the rype of
texture appears to be preserved. The groupings are consistent
with some higher level phenomena. Using the nonlinearity
provided by the RBEF, it appears that some rudimentary class-
based segregation has occurred.

B. High level image feature representation

One of the higher level features depicted in Fig. 5 from the
UMass “Faces in the Wild” database produces an interesting
result. The input that best activate it are, of course, faces.

(a) Mid-layer kernel
“mountains”

“trees”

cluster on (b) Mid-layer kernel cluster on (c) Mid-layer

cluster on

kernel

“leaves”

Fig. 4: TREC-VID mid-layer data clustering.

(a) Input that activated centroid 55 of (b) Aggregate over highest
64 > 0.80 activated faces

Fig. 5: High-level feature activation of faces in LFW data set.

C. Detection and Classification

We found that initial resolution of the patch-size altered the
performance, depending on the data set size. For the CIFAR10
database, the bottom layer was 8 x 8, whereas for the TRECVid
and Media Eval retrieval challenges, we used 32 x 32, twice
aggregating. The percentages on CiFAR are not quite state of
the art, but this is likely due to the training data in this case
as we did not pool. However, the concept demonstrates the
considerable potential. Kernel GMM’s took an incredibly long
time, and interestingly did not perform well. This is, perhaps,
an artifact of redundancy in constructing the high dimensional
space.

TABLE I: Deep Learner Comparisons

Accuracy
Sparse Autoencoder 80.2%
Sparse RBM 79.0 %
Kernel GMM’s 75.6 %
Kernel k-Means 80.6%

V. CONCLUSIONS

We have proposed a deep learning architecture using kernel
k-means. It has been shown to work on large data sets, and it
performs at least as well as comparative methods with consid-
erable ease of implementation. There are a number of future
directions that we wish to pursue, mainly experimentation
on the types of kernels. We also wish to theoretically prove
properties that relate the algorithm to traditional deep learning
methodologies.

ACKNOWLEDGMENTS

David Buttler has been instrumental to administering our
distributed computing efforts. Doug Poland has discussed and
directed our work. Grace Vesom and Carmen Carrano have
offered valuable input.

REFERENCES

[1] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, 60, 2 2004, pp. 91-110

[2] A. Oliva, A. Torralba, “Modeling the shape of the scene: a holistic
representation of the spatial envelope, ”” International Journal of Computer
Vision, Vol. 42(3): 145-175, 2001. PDF

[3] P. Mermelstein, “Distance measures for speech recognition, psychological
and instrumental,” in Pattern Recognition and Artificial Intelligence, C.
H. Chen, Ed., pp. 374388. Academic, New York.

[4] P. Viola, M. Jones, “Robust real-time face detection,” International journal
of computer vision, 2004 - Springer

[5] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2008

[6] Y. Bengio, Learning Deep Architectures for Al, Foundations and Trends
in Machine Learning, 2(1), pp.1-127, 2009

[7]1 G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural Computation, 2006

[8] G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep Neural
Networks for Acoustic Modeling in Speech Recognition,” IEEE Signal
Processing Magazine, 29, November 2012

[9] L. Deng, “An Overview of Deep-Structured learning for Information
Processing,” Microsoft Research Technical Report, 2011

[10] A. Mohamed, G. Dahl, G. Hinton, “Acoustic Modeling using Deep
Belief Networks,” IEEE Transactions on Audio, Speech, and Language
Processing

[11] G. Hinton, “To recognize shapes, first learn to generate images,”
Technical Report 2006

[12] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado,
J. Dean, A.Y. Ng., “Building high-level features using large scale unsu-
pervised learning,” ICML, 2012

[13] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, Cambridge, UK, 2000

[14] B. Scholkopf, A. Smola, K.-R. Muller, “Nonlinear Component Analysis
as a Kernel Eigenvalue Problem,” Technical Report 44, Max-Plank
Institute

[15] A. Coates, H. Lee, and A. Ng, “An Analysis of Single-Layer Networks
in Unsupervised Feature Learning,” In AISTATS 14, 2011

[16] A. Coates, A. Karpathy, and A Ng, “Emergence of Object-Selective
Features in Unsupervised Feature Learning,” In NIPS, 2012

[17] A. Coates and A Ng, “Learning Feaure Representations with K-means,”
In Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS, 2012

[18] D. Hosmer and S. Lemeshow, “Applied Logistic Regression,” Wiley,
2013

[19] A. Agarwal, B. Triggs, “Hyperfeatures: Multilevel local coding for visual
recognition. In: 9th European Conference on Computer Vision,” Vol. 1,
pp. 30-43, 2006

[20] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, L. Stoica, “Spark:
Cluster Computing with Working Sets,” HotCloud 2010

